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Abstract—In today’s ubiquitous computing environment
where the number of devices, applications and web services
are ever increasing, human attention is the new bottleneck in
computing. To minimize user cognitive load, we propose Attelia,
a novel middleware that identifies breakpoints in user interaction
and delivers notifications at these moments. Attelia works in real-
time and uses only the mobile devices that users naturally use and
wear, without any modifications to applications, and without any
dedicated psycho-physiological sensors. Our evaluation proved
the effectiveness of Attelia. A controlled user study showed
that notifications at detected breakpoint timing resulted in 46 %
lower cognitive load compared to randomly-timed notifications.
Furthermore, our “in-the-wild” user study with 30 participants
for 16 days further validated Attelia’s value, with a 33% decrease
in cognitive load compared to randomly-timed notifications.

I. INTRODUCTION

The amount of information available for consumption has
grown by orders of magnitude while the amount of attention
users have has remained constant. This has, in part, driven
users to multi-task more and use notifications on their comput-
ing devices, often resulting in greater numbers of interruptions.
The number of networked computing devices belonging to
users, along with those embedded in the environment, such as
home, office, or urban space, have also been increasing quickly.
Users own, carry and interact with (even simultaneously) [1],
an increasing number of mobile networked devices [2]. On
each device, the number of applications, services, and commu-
nication channels is increasing as well, being driven by both
technological progress and market trends, such as maturing
Web middleware and flexible cloud platform services for rapid
service deployment, or global application markets such as
the “AppStore”. Moreover, the advent of social networking
services in addition to conventional communication channels
such as email and SMS increases the number of people that
users communicate with daily.

Given this background of information overload, the limited
resource of human attention is the new bottleneck [3] in
computing. In this paper, we focus on interruption overload,
a form of distraction caused by the excessive number and in-
appropriate delivery of notifications from computing systems.
Typical notification systems deliver notifications immediately
after they are available, and this has been shown to negatively
affect users” work productivity [4], [5], [6], [7]. One possible
solution is to defer notifications until the user’s natural break-

point [8], the boundary between two adjacent units of users
activity, which can lower the impact on users cognitive load
caused by the interruption.

In this paper, we particularly focus on user’s “mobile
experience” on the phone while they are actively using their
own devices, and demonstrate our ability to detect breakpoints,
towards the realization of user-attention-aware adaptive notifi-
cations. Our system, Attelia, (1) works on smartphone devices,
(2) is applicable to situations of user mobility and use of a
wide variety of applications, (3) performs real-time detection
of breakpoints to support real-time adaptation, and (4) does
not require the use of dedicated external psycho-physiological
Sensors.

A controlled user study with 37 participants showed that
providing notifications at detected breakpoints resulted in 46%
lower cognitive load, compared with conventional notifications
presented to users at “random” times, for users who showed
higher sensitivity to notification timings. Furthermore, our “in-
the-wild” user study for 16 days with 30 participants showed
similar results. Providing notifications at detected breakpoints
resulted in 33% lower cognitive load for the users who showed
higher sensitivity in their subjective evaluations. Also, users’
response time to the notification was faster by 13% than using
conventional (or random) notification timings.

The contribution of this paper is two-fold. First, we present
the design and implementation of our novel middleware for
real-time breakpoint detection on smartphones that does not
require the use of dedicated external psycho-physiological sen-
sors. Second, we present the results from both a controlled and
an “in-the-wild” field user study that resulted in significantly
lower cognitive load when the breakpoint detection system was
used to defer notifications.

In the remainder of this paper, we describe the interruption
overload problem caused by notifications from computing sys-
tems in Section II. Next we define the requirements for adap-
tive notification scheduling on smartphones after we introduce
recent trends in notifications in Section III. We then present
our design approach for Attelia in Section IV, and describe the
Attelia system architecture in Section V. Section VI describes
our controlled user study with 37 participants and Section VII
reports on a follow-up field study for 16 days with 30 users. In
Section VIII we discuss further research opportunities based
on the findings from our user studies. Section IX describes



related work, and we conclude this paper in Section X.

II. INTERRUPTION OVERLOAD

Interruption overload caused by large numbers of ill-
timed notifications is one piece of the larger problem of
information overload, and is increasing in frequency. As such,
more research has focused on the topics of interruptions and
multitasking [9]. The main source of interruption overload
is “notifications” from computing systems. Notifications were
originally designed to push information to users in a more
speedy and timely manner, rather than requiring users to pull
or manually look for new information.

Despite their obvious benefits, notifications have been
shown to negatively affect users’ work. Several researchers
have found that they lead to a reduction in work productivity,
including the resumption time from the interruption back to the
primary task and the quality and amount of time available for
decision making [4], [5], [6], [7], [10], [11]. Furthermore, other
researchers have found increased negative affects or emotional
states, social attribution[4] and psycho-physiological states
[10] as a result of these interruptive notifications. Although
notifications can be configured by users, and even be disabled,
simply disabling notifications negates their benefits and cannot
satisfy users’ needs for the timely provision of information.
Previous research has shown that users prefer to keep using
notification systems for information delivery even given the
interruption costs, rather than turning them off and checking
for new information manually [12].

A. Existing Research on Mitigating the Cost of Notifications

There are two main approaches for addressing the problem
of interruptive overload: (a) scheduling (deferring) notifica-
tions, and (b) mitigation of notifications. In the first approach,
deferring notifications, several research projects have used
“breakpoints” to target the timing of deferred notifications to
users. A breakpoint [8] refers to a concept in psychology in
which a human’s perceptual system segments activities into
a hierarchical structure of discrete sub-actions. The boundary
between two adjacent action units is called a breakpoint.
There are at least three granularities of breakpoints: Fine,
Medium, and Coarse, that can be reliably detected by users
performing interactive computing tasks [13]. Related research
has shown that deferring notifications until users sensed break-
points reduces interruption cost in terms of task resumption lag
and subjective frustration [4], [14], [15]. Another approach,
mitigation, tries to reduce a user’s interruptive cognitive load
by changing the modality used to deliver notifications, such
as “silent” mode, “vibration” mode or only flashing an LED,
while leaving the timing of the notifications unchanged. This
approach serves to change the saliency of the interruption.

Although the two approaches described above are not
mutually exclusive and can be complementary with each other,
in this paper, we particularly focus on notification deferral.
Given the growing number of notifications that users deal
with, changing the timing of notifications rather than their
saliency would seem to have greater potential impact on
users’ interruptive overload. To the best of our knowledge,
existing research exploring the deferring strategy has focused
on desktop computing, mainly with a single device, with

evaluation in a controlled environment. We see an important
research opportunity in realizing and evaluating a deferring
strategy (1) in a mobile environment, (2) in real-time, (3) with
a variety of applications, and (4) using“in-the-wild” users and
data.

III. ADAPTIVE NOTIFICATION SCHEDULING ON SMART
PHONES

To help scope our research contributions, we define the re-
quirements for adaptive notification scheduling on smartphones
after we introduce recent trends in notifications.

A. Recent Trends of Notifications

Reflecting the recent trends in ubiquitous computing de-
scribed in Section I, we point out and focus on the following
distinctive characteristics of notifications in such environments.

e Increasing diversity in types and sources of no-
tifications: Based on an increasing number of ap-
plications and services, communication channels and
connections between users, there have been an in-
creasing diversity of types and sources of notifications,
including updates from social networks, signals from
sensors, and queries from participatory sensing sys-
tems [16],

e  Multiple mobile devices as targets: Users are carry-
ing multiple mobile (and wearable) devices, including
smartphones, tablets, smart glasses and smart watches
[1], [2], all of which can be targets of notifications.

e  Wider range of urgency level: While most notifica-
tions are informative in nature, some require almost in-
stant reaction: e.g., Early Earthquake Warning (EEW)
[17] notifications for which users need to physically
react within a few seconds.

e Increasing length of interruptive periods: Recent
lifestyles include always having access to one’s mobile
devices, making interruption overload an issue all day
long, even while a user is sleeping.

B. Principles for Attention Status Sensing

To defer notifications to user’s breakpoints, we must be
able to sense their attention state. Based on the previous
literature, we denote the following as principles in attention
status sensing.

o  Feasibility for mobile devices: Users carry and use
mobile devices, such as smart phones or tablets,
for everyday computing and communication. Thus a
breakpoint detection system needs to work on a mo-
bile platform, in terms of energy-efficiency, available
sensors, etc.

o Real-time sensing: To support notification adaptation
and deferral on the fly, the sensing needs to be
performed in real-time.

e Applicability to diverse types of notification
sources: The breakpoint detection system needs to
work for diverse types of notification sources.



e All-day-long use: Breakpoint sensing needs to be
performed all day long, or at least as long as the user’s
notification system is available.

IV. DESIGN OF ATTELIA

In this section, we present our design of Attelia, based
on the requirements we described in the previous section.
Attelia detects appropriate timings for delivering notifications
to users, with three distinctive features. First, it detects those
timings on smartphones, without the use of an external server
or any psycho-physiological sensors. Second, Attelia detects
breakpoints in real-time (not post-hoc) so that it can be used
to adapt notification timings at run-time. Finally, the breakpoint
detection can be applied to a wide range of applications
installed on users smartphones.

The following subsections describe our approach for per-
forming breakpoint detection that satisfy these three features,
including: (1) using breakpoints to temporally target interrup-
tions, (2) using application usage as a sensor, and (3) using
machine learning to perform real-time breakpoint detection.

Since our research focus is on the user’s “mobile experi-
ence” during his/her active manipulation of devices, Attelia
scopes breakpoint detection during their active engagement
with mobile devices, and does not consider moments when
users are not interacting with them.

A. “breakpoint” as a Temporal Target for Interruption

Related work in real-time sensing of available user at-
tention or cognitive load shows that at least two psycho-
physiological sensors are needed even in non-mobile situations
[18]. Given the burden of wearing a psycho-physiological
device constantly, our approach only uses the users’ mobile
devices, and attempts to sense more coarse-grained, but easier
to sense signals, from which appropriate timings for notifica-
tions can be inferred.

B. Application Usage as a Sensor

With our scoping to active use of mobile devices, we focus
on a user’s application usage and use that information to detect
a user’s breakpoints. We focus on application usage and not
physical sensors, despite their wide proliferation on mobile
devices for two reasons: simplicity of implementation and
reducing the reliance on a sensor that may not exist on all target
mobile devices (or may be mounted in different locations).

Table I shows some possible knowledge sources for identi-
fying breakpoint and and Table II shows, for each source type,
how it can be acquired. The application-related knowledge and
information can include both relatively static knowledge that
is specific to each application, such as when users transition
between multiple “stages” in game applications, and that are
designed and implemented by the application developers in
the development phase; and relatively dynamic information,
such as run-time status and events that result from the run-
ning applications. Using knowledge from the internals of any
specific application is not feasible given the huge number of
applications available and the fact that application developers
would need to expose internal information at development
time. Instead, we collect run-time status events from the
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Fig. 1. System Architecture of Attelia on Android Platform

operating system and executing applications, and use them
to identify relationships to ground truth values of interruptive
overload provided by users, during a training phase.

C. Real-Time Detection with Machine Learning techniques

Similar to previous work on activity recognition, our
approach also uses machine learning-based classification to
understand these relationships. For each time frame T, a
feature vector V is extracted from the sensed data, and a trained
classifier identifies the time frame as a user breakpoint or not.

V. ATTELIA SYSTEM ARCHITECTURE

Figure 1 shows the system structure of Attelia implemented
on the Android 4 platform. Attelia consists of an Android
service that includes several internal components for UI event
logging, breakpoint ground truth annotation logging, as well
as the mechanisms for machine learning including feature
extraction and classifying (using an embedded Weka [19]
engine).

A. Execution Modes

Attelia can execute in ground truth annotation mode, off-
line training mode or real-time breakpoint detection mode.
In the annotation and detection modes, the UIEventLogger
component listens to the stream of incoming UI events and
records relevant events to the log file.

e Ground truth collection: In this mode, users man-
ually provide ground truth about breakpoints during
application usage. Figure 2 shows a screen-shot of
Attelia, with our Annotation widget floating on the
screen. While manipulating ordinary Android appli-
cations, users push the floating button when they are
switching activities. The Attelia service records the
stream of UI events (excluding those from the anno-
tation button) and breakpoint timestamps (moments
when the annotation button was pushed).

e  Off-line model training: In this mode, feature extrac-
tion and classifier training is executed off-line, using
the previously-stored sensor and ground truth data.



TABLE 1. APPROACHES OF KNOWLEDGE C

OLLECTION FOR BREAKPOINT DETECTION

Approaches on Knowledge Source of Breakpoint

Examples of Data Types

Application-specific breakpoint knowledge explicit breakpoint declaration

inside application, explicit future breakpoint forecast inside application

Runtime status/event of systems and applications stack trace, number of thread:

invocation, rendered screen image, Low-level GUI events, switches between applications

s, thread names, memory consumption Android API invocation, system call

TABLE II. TIMINGS OF KNOWLEDGE INPUT AND DATA COLLECTION

Knowled B
Approaches on Knowledge Source of Breakpoint fowlecge on e

akpoints: When? By Who? and How? Data Collection at

Application Development Phase

l System Training Phase Application Run-Time

Application-specific breakpoint knowledge Embedding additional API calls to
provide explicit breakpoint knowl-
edge (by application developer)

None From API calls embed-
ded inside running appli-
cations

Runtime status/event of systems and applications None

Ground truth annotation of collected status/event From the middleware
information (by application users) and operating system

Floating button |
for annotation

Fig. 2. Ground Truth Annotation with Attelia

TABLE III. UIEVENT COLLECTED IN ATTELIA
Event Types Events ‘
View View clicked, View long clicked, View selected,
View focused, View text changed, View selection
changed, View text traversed at movement

granularity, View scrolled

Transition Window state changed, Window content changed

Notification Notification state changed

e Real-time mobile breakpoint detection: Sensing,
feature extraction, and classification with a previously-
trained model is performed in real-time on a smart-
phone.

B. Sensing Data and Features

To obtain the stream of UI events from the middleware,
we use the Android Accessibility Framework. Using this
framework, Attelia can collect Ul events and data about the
UI components the user is interacting with. A list of the UI
Events we collect is shown in Table III.

From these events, we extract the 45 features outlined
in Table IV. These features are extracted for each “time
frame” and stored during ground truth annotation, and are
input to the Weka machine learning system for classifying
during breakpoint detection. We attempted to be exhaustive in
providing possible features to capture as many characteristics
of the real execution environment as possible.
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C. Frame Length

With an expectation that our choice of time frame length
Ty will affect our ability to perform breakpoint detection, we
conducted a small user study to investigate the impact of frame
length on detection accuracy. Eight participants were recruited:
university undergraduate and graduate students and staff with
ages between 18 and 27 years, who use smartphones daily.
Each participant manipulated five common Android applica-
tions (Twitter, Yahoo News, YouTube, Kindle, Browser) for 5
minutes each (per application) performing everyday tasks, and
indicated their breakpoints using our floating annotator button.
Participants used a Samsung Galaxy Nexus [20] smartphone
running Android version 4 for the experiment.

Figure 3 shows the classification accuracy results with
different frame lengths (0.25 to 5 seconds), using 10-fold cross
validation on Weka 3.7.9 and J48 classifier. The data for each
application is aggregated from all eight participants, and is
represented as a separate line in the graph. An additional line
in the graph (bolded) represents all application data aggregated
together from all the participants. Accuracy is low when the
frame length is very short (e.g., 0.25 seconds), because there
are not enough sensed Ul events within that time span to
achieve a high classification accuracy. However, around 2 to
2.5 seconds, the accuracy begins to stabilize. At the 2.5-second
setting, accuracy was 82.6%, precision was 82.7% and recall
was 82.3%.

D. Power Saving

To save power, we disable real-time feature extraction
and classification when the device screen is off, as we are



TABLE IV.

FEATURES USED IN ATTELIA

Feature Types l

Features

Rate of occurrence of each UI Event type inside the frame

snipped (one for each event type presented in Table III)

Statistics on the status of the event source UI component

rate(isEnabled), rate(isChecked), rate(isPassword)

Statistics on the events’ timings in the frame

min_timegap, mean_timegap, max_timegap, stdev_timegap

Statistics on the location of the event source UI components

min., mean., max., stdev., the value of the smallest rectangle, the value of the biggest rectangle of
X-left, X-right, X-width, Y-top, Y-bottom, Y-height

TABLE V. COMPARISONS OF POWER CONSUMPTION OVERHEAD
Sensor Type Frequency (Hz) Overhead (mW)
UI Events 10 51.70
120 102.90
Accelerometer 60 48.76
15 12.08
100 158.88
Gyroscope 50 129.24
15 74.04

concerned with detecting breakpoints when the user is engaged
with the device. In addition, if no UI event occurs within a
given time frame, no classification is performed.

Table V shows a power comparison between using our
Ul events and using common sensors. We used a Samsung
Galaxy Nexus with Android 4.4.4 and measured the data with
a Monsoon Power Monitor [21]. Each table value is the average
of five 5-minute measurements. The result shows that the
overhead of our UlEvent data collection software is quite low
compared with other sensors and considering that multiple
types of sensors, such as the accelerometer, gyroscope and
GPS, are used in combination for many activity recognition
systems,

In Attelia, since the number of incoming Ul events depends
on user interaction, we looked to our user study data to
determine an appropriate number. Based on the data collected
from 30 users for 16 days, the average number of UI events
was 10.6 per second on average (min = 1, max = 549,
stdev. = 15.1) during users’ active manipulation of their
device. We then logged the power consumption using Android
instrumentation that fired approximately 10 UI events every
second. To compare to the other sensors, we implemented a
basic application which reads and stores the sensor data with
the specified frequency.

E. Portable Implementation

Attelia is implemented as a “Service” inside the Android
platform. By appropriately setting the permissions for the
service, it can log the stream of UI events, such as tapping,
clicking, and scrolling or modifications of Ul components in-
side the currently-active Android application without requiring
root privileges. This implementation allows the service to be
distributed through the Google Play store and contributes to
the deployability of the system to end users.

VI. CONTROLLED USER STUDY

Next, using this implementation, we conducted a controlled
user study to better understand how the Attelia service can
be used. Specifically, we investigated whether notifications
provided to users at their detected breakpoints leads to reduced

cognitive load, compared to different notification provision
strategies, including random, and non-breakpoint timings.

A. PFarticipants

We recruited 37 participants for the study, including univer-
sity students, staff members and research engineers, with ages
between 19 and 54. All of the participants use smartphones in
their daily lives. Subjects were not paid for their participation
and were not told the specific purpose of the study.

B. Experimental Setup

For the study, we provided participants with Samsung
Galaxy Nexus smartphones running Android 4.3. The notifica-
tion feature of the Android platform was disabled. The Attelia
service, along with six representative Android applications
(Twitter, Gmail, Yahoo News, YouTube, Kindle, Browser)
were installed on each phone. The Attelia service was con-
figured to detect breakpoints in real-time, with a J48 decision
tree classifier (trained on our previous users) that executes
periodically with a 2.5-second time frame T7.

Users were exposed to four different strategies for being
interrupted by notifications: disabled (no notification), random
timing, breakpoint timing (our approach) and non-breakpoint
timing (interrupting at times that our system determines as
inopportune). The three latter strategies were configured to
wait at least 30 seconds between two consecutive interruptions.

C. Interruptive Tasks

When users were interrupted, a full screen pop-up appeared
on the screen to ensure that the interruption would not go
unnoticed. The pop-up contains the first paragraph from a
news article, and users were given a task to perform: read the
paragraph and select an appropriate title for the article given
three options. This interruptive task was taken from similar
studies of interruptions [22], [23]. Subjects were instructed
to answer the question as quickly and accurately as possible.
After the user answered the question, the pop-up disappeared
and the user could return to the original task that she was
performing.

D. Experiment Procedure

Our experimental procedure contained two parts. In the
first part, each user was given a printed email and was told
to compose and send an email with this specified text using
the Gmail app. Each user repeated this task five times, with
different text and a different strategy. In the second part, each
user was asked to use each of the other selected applications
(Twitter, Yahoo News, YouTube, Kindle, Browser) as they
“normally would” for 5 minutes each, and experienced a
different strategy with each application.
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TABLE VI TwoO CLUSTERS IN THE CONTROLLED USER STUDY
Cluster name [ Users l Mean WWL Stdev.
“sensitive” 19 23.11
“insensitive” 18 9.92

The order of the email texts (part 1), applications (part
2), and notification strategies were counterbalanced using a
balanced Latin Square to remove ordering effects. As there
were 4 strategies, and the email and app use tasks were
performed 5 times, each user saw one strategy twice, which
was randomly selected. A repeated measures within-subject
design was used with the notification strategy as factors.

E. Measurements

To measure user’s subjective cognitive load, users answered
the NASA-TLX[24] questionnaire after each task (total of 10
times per user).

F. Results: Subjective Cognitive Load

Across users, we saw differences in the range of subjective
cognitive load (or weighted workload (WWL)) means and
variances across the different strategies, as shown in Figure 4.
This fact motivated us to try to identify clusters within our
user population.

Based on a hierarchical clustering using the Ward method
and Euclidean distance on the variance of each users NASA-
TLX WWL scores, we identified 2 distinct clusters. Table VII
shows the number of users and the mean personal WWL
score standard deviation in each cluster respectively, based
on the K-means clustering with the Hartigan-Wong method.
Since this clustering was based on the variance of each user’s
scores, we named those two clusters “sensitive” (those with
higher variance among the different strategies), and “insensi-
tive”. Figure 5 shows the average NASA-TLX WWL scores
for the different notification strategies, for the two clusters
respectively.

For the “sensitive cluster”, the most significant finding is
that our breakpoint strategy (“BP”) results in a 46% reduction
in cognitive load, compared to the random strategy (“Ran-
dom”), which approximates how people are currently inter-
rupted by notifications with the standard Android notification
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Fig. 5. NASA-TLX WWL Scores for Each Cluster

system. When compared to the baseline (“Disabled” strategy
with a cognitive load score of 32.95) with no notifications, the
breakpoint strategy resulted in only an increase of 35% in cog-
nitive load, while the random strategy resulted in an increase of
66%. Also, as we expected, the non-breakpoint strategy (“Non-
BP”) where the system was configured to intentionally deliver
notifications only at the non-breakpoint timings, resulted in
the highest increase in cognitive load from the baseline: 73%.
A Friedman test revealed a significant effect of notification
strategy on the WWL score (x?(3) = 16.5,p < 0.05).

A post-hoc pair-wise comparison using Wilcoxon rank sum
tests with Holm correction showed the significant differences
between “Disabled” and “Random” (p < 0.01, v = 0.34),
between “Disabled” and “non-BP” (p < 0.01, v = 0.39),
between “Disabled” and “BP” (p < 0.05, v = 0.29), between
“Random” and “BP” (p < 0.05, v = 0.24), and between “non-
BP” and “BP” (p < 0.05, v = 0.26). Between “Random” and
“non-BP”, a statistical difference was not observed.

For the “insensitive cluster”, the graph shows the insensitiv-
ity of the users. As expected for this user group, our Friedman
test and pair-wise test with Wilcoxon rank sum tests show
only significant differences between “Disabled” and the other
strategies. (Friedman test with the effect of notification strategy
on the WWL score (x?(3) = 9.4,p < 0.05)). The significant
differences from the post-hoc test using Wilcoxon rank sum
tests with Holm correction are observed between “Disabled”
and “Random” (p < 0.01, v = 0.30), between “Disabled” and
“non-BP” (p < 0.01, v = 0.35), and between “Disabled” and
“BP” (p < 0.01, v = 0.34).

VII. IN-THE-WILD USER STUDY

Based on these promising findings from our controlled
study, we conducted an “in-the-wild” or field user study to
better understand how the Attelia service can perform in users’
real environments. By installing Attelia on each participant’s
own smart phone, we investigated whether notifications pro-
vided to users at their detected breakpoints leads to reduced
cognitive load during participants’ everyday smartphone usage.

A. Participants

We recruited 30 (20 male and 10 female) participants for
the study. They are university students and staff members, with
ages between 18 and 29. 20 participants came from computer
science and information technology related departments, while



the other 10 came from other schools, such as economics,
psychology, or social sciences. All of the participants use
smartphones with Android OS version 4.3 (or above), in their
daily lives. Subjects were paid $60 for their participation.

B. Experimental Setup

For the study, we prepared the Attelia service with some
additional experiment-related logics and parameters for in-
stallation onto each participant’s smartphone. Similar to the
controlled user study, the service was configured to detect
breakpoints in real-time, using the same J48 decision tree
classifier trained earlier, that executes with a 2.5-second time
frame T'. The service was also configured to use three differ-
ent notification strategies: disabled (no notification), random
timing and breakpoint timing (our approach). Each day, our
study software randomly chose one of the three strategies for
use, for notifying the user throughout the day.

The minimum interval between two consecutive notifi-
cations was set to 15 minutes, the maximum interval to
30 minutes, and the daily maximum number of interruptive
tasks to 12. The study software also was configured to only
send interruptions from 8AM to 9PM daily. The parameter
values were carefully chosen after interviewing prospective
participants about their daily lives, to get a sufficient number
of data samples without overburdening them.

C. Interruptive Tasks

When users were interrupted, two full screen pop-ups
appeared on the screen. The first screen asked if the timing
was during a natural breakpoint. Regardless of the answer
to the first question, the second pop-up appeared, presenting
the same interruptive task as we used for the controlled
user study. Users were instructed to answer the question as
quickly and accurately as possible. After answering, the pop-
up disappeared and the user could return to her original task.

D. Experiment Procedure

Our experimental procedure consists of three parts. (1) At
the beginning of the user study, each participant had a meeting
with a researcher. After the participant received information
and instructions for the user study, he signed the consent
form to join the study. We installed our Attelia service on
his smartphone, and turned it on. (2) After the meeting,
each participant experienced our notifications for 16 days.
As described above, the notification strategy was changed by
the service daily. At the end of each day, each participant
evaluated his/her notification experience for that day, filling
out the NASA-TLX survey. (3) After the 16-day period was
completed, participants filled out the post-experiment survey,
uninstalled the Attelia service, and were paid.

E. Measurements

The Attelia service recorded the time taken to respond to
the first and second notifications, time to answer the quiz, and
the answer to the quiz. The data was uploaded to our server
every night. The NASA-TLX questionnaires (implemented as
a web page on our web server) were sent to each user via
email every night, thus the survey results were stored inside
our database on the server.

TABLE VII. Two CLUSTERS IN THE WILD USER STUDY

Cluster name l Users l Mean WWL Stdev.

“sensitive” 13 21.38
“insensitive” 14 8.19
60
51.07
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[
g
8 40 3672 38.51 38.67
v 34.22
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Fig. 6. NASA-TLX WWL Scores for Each Cluster

F. Results: Subjective Cognitive Load

We collected NASA-TLX surveys from each of the 30
participants for 16 days. Data from 27 seven users were used
in the analysis as the logged data for the remaining 3 users
was not properly recorded and uploaded to the server or they
forgot to fill the daily survey.

Again, for the result, due to the observed differences in the
variance of NASA-TLX WWL scores (“sensitivity”’) between
users, we first split users into 2 clusters, according to the results
from a hierarchical clustering. Table VII shows the number of
users and the mean personal WWL score standard deviation in
each cluster respectively. We did not observe differece in score-
sensitivity between gender. Figure 6 shows the average NASA-
TLX WWL scores for the different notification strategies, for
the two clusters respectively.

For the “sensitive cluster”, we observe the same trend
as we saw in our controlled user study. With the baseline
cognitive load 34.22 for the “Disabled” strategy, our breakpoint
strategy (“BP”) results in an 33% reduction in cognitive load,
compared to the random strategy (“Random”), which approxi-
mates how people are currently interrupted by notifications.
When compared to the baseline (“Disabled” strategy) with
no notifications, the “breakpoint” strategy resulted in only
an increase of 33% in cognitive load, while the “Random”
strategy resulted in an increase of 49%. A Friedman test
revealed a significant effect of notification strategy on the
WWL score (x%(2) = 8.5, p < 0.05). A post-hoc pair-
wise comparison using Wilcoxon rank sum tests with Holm
correction showed significant differences between “Disabled”
and “Random” (p < 0.01, v = 0.37) and between “Random”
and “BP” (p < 0.05, v = 0.20),

G. Results: Response Time for the First Pop-up

Next we present the response time to the first pop-up as
shown in Figure 7. The response time denotes the timestamp
difference between when the first pop-up appeared on the
screen to when it was answered by the user. We collected
1130 data points for “random” and 1032 data points for
“breakpoint” strategies. The average response time was 3.18
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Fig. 7. Response Time to the First Pop-up

seconds in “random” and 2.77 seconds in “breakpoint” strategy
respectively. Our Wilcoxon Signed-rank test showed that there
is a significant effect of strategy (W = 343, Z = —3.19,
p < 0.05, v =0.37).

VIII. DISCUSSION

Through our user studies, we proved the effectiveness of
Attelia not only in a controlled environment but also in “in-
the-wild” real user environments. We showed that notifications
delivered at breakpoint timings identified in real-time by
Attelia, resulted in cognitive load levels that were 33% less
than notifications delivered at random moments, and decreased
the response time to the notification by 12%. Now we discuss
further research opportunities that this research enables.

Firstly, we are interested in further studying “insensitive”
users and determining whether other forms of notification man-
agement may be of use to them. We see another opportunity
for further improvement of the system in terms of the detection
performance, possibly with personalization of the model with
active learning and a longitudinal user study.

Deployment of the system with “real” notifications from
“real” Android applications is yet another challenge for us.
Due to the limitation of the Android platform where no APIs
for customizing or overriding the standard Android notification
system exist, Attelia currently uses the artificial interruptive
notification system we built for our evaluation. However,
Attelia could certainly export its “interruptibility API” , based
on the real-time detection results, for other applications to use.

We have reached a time when users carry and use multiple
mobile and wearable devices, so support for those devices
and sensors are our obvious next challenge. We have already
confirmed that our Attelia service runs on Google Glass in
addition to conventional Android smartphones and tablets.
Our hypothesis is that, as long as those devices have any
kind of user interface with which to interact, our approach
of “application usage as a sensor” will be applicable to those
devices. Breakpoint detection while the user is not actively
manipulating the device is another very interesting research
area, probably requiring the use of additional sensors, such as
GPS, accelerometer, proximity and light sensors.

IX. RELATED WORK

In early work on finding appropriate moments for in-
terruption, Horvitz et al. inferred interruptibility accurately
in desktop computing environments, by using context infor-
mation, such as interaction with computing devices, visual

and acoustical analyses, and online calendars [25]. For this,
recognition was performed in a posteriori manner.

Work by Begole et al. [26], Horvitz et al. [27] are in the
first generation of systems with real-time model construction
and detection of interruptibility although their systems used
dedicated custom hardware. Igbal et al.[28] built OASIS which
defers desktop-based notifications until suitable timings of
interruption were detected in real-time. They focused on the
detection of breakpoints [8], based on user interactions with
an application and provided user annotations.

More recently, interruptibility research has focused on
mobile devices. Ho et al. used wireless on-body accelerometers
to trigger interruptions in the timing of user’s switch between
activities [29]. The authors found that the users’ annoyance
was minimal when interruptions were triggered at the moments
of switching between activities. While their approach needs
an external on-body sensor, Attelia uses only the smartphone.
Fischer et al. focused on the interruptibility immediately after
phone activities including completion of phone calls and text
messages [30]. They found that the users tend to be more
responsive to notifications after mobile phone activities than
at random other timings. While the authors’ approach focused
on phone-related activities, our approach uses applications
available on the market and installed on the phone, including
phone-call and text messaging. Smith et al. focused on dis-
ruptive phone calls and took the approach of “mitigation” by
automatically setting phone call ring tones to different modes,
such as silent answering, declining, and ignoring [31]. A user
study showed that their approach was useful, even with user
concept drift. Their mitigation approach is orthogonal to our
scheduling approach, thus a combination of both approaches
is possible.

Hofte et al. used smartphones for interruptibility study.
They used the experience sampling methodology on location,
transit status, company and activities to build a model for
interruptibility [32]. Also Pejovic et al. explored whether,
and how, suitable moments for interruption can be identified
and used in smartphones [33]. Based on “broader context”
including activity, location, time of day, emotions and engage-
ment, their InterruptMe system decides interruptibility. Their
approach determines timing based on smartphone sensor data.
In contrast, our approach relies on user interaction, focusing
on the period while the user is actively manipulating the
device. According to our power consumption measurement in
Section V, we found that the power overhead for our approach
was significantly lower than the physical sensor approaches.
Also as users will continue to have an increasing number
of devices, we believe our approach will be more effective
because our approach can be easily deployed to devices with
and without physical sensors. Also their implementation relies
on information on user’s activity, such as work mode, emotion,
and company, manually provided by the user in order to infer
interruptibility. On the other hand, our system does not need
any manually-provided information, simply relying on the UI
events coming from the Android system.

X. CONCLUSION

In this paper, we proposed Attelia, a novel middleware
that identifies when interruptive notifications should be de-
livered to minimize impact on user’s cognitive load, sup-



porting attention-aware adaptation for maintaining a user’s
productivity. Attelia detects such moments in real-time, uses
only the mobile devices that users naturally use and wear,
without any modification to applications, and without any
dedicated psycho-physiological sensors or physical sensors on
the devices. Our evaluation proved the effectiveness of Attelia.
Both our controlled and “in-the-wild” evaluations showed
that notifications presented at breakpoints detected by Attelia
resulted in significantly lower cognitive load and response time
compared to randomly-timed notifications.
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